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General Necessary Conditions for the Derivation of the
Secondary Constraints of a First-Order Relativistic
Wave Equation
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A first-order relativistic wave equation of the Gel’fand-Yaglom form is con-
sidered in the presence of an external electromagnetic field, and general condi-
tions are derived that are necessary for the derivation of its secondary constraints,
the general form of which is given. Examples demonstrating the validity of these
conditions are also given.

1. INTRODUCTION

Relativistic wave equations of the first order with the general form
(Gel'fand et al., 1963)

{—[L07T0+|1.1771+[]_27T2+ﬂ.377'3+ﬂ)(}¢l=0 (1)

accept subsidiary conditions of the second kind (secondary constraints)
(Pauli and Fierz, 1939; Velo and Zwanziger, 1969; Koutroulos, 1986a-c)
namely, relations among the components of the wave function ¢ involving
no derivatives. In the above equation, L; (i=0,1,2,3) are n X n matrices,
their dimension n depending on the underlying representation according
to which the wave function ¢ transforms; 1 is the n X n unit matrix; y is a
constant related to the masses of the particles associated with the field
described by the wave equation; and ; (i=0, 1, 2, 3) are the components
of the electromagnetic four-momentum vector. We consider the above wave
equation in the presence of an external electromagnetic field.

A major problem with these wave equations is how the subsidiary
conditions associated with them can be derived. In certain cases it is
preferable to reformulate the wave equation in spinorial form and then, by
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employing spinor calculus, to obtain its subsidiary conditions, as was done
in Koutroulos (1986b,c) (see Pauli and Fierz, 1939). The method of using
spinor calculus is very complicated. Thus, it is better to look for other ways
of finding the subsidiary conditions, such as by means of matrix calculus,
as is demonstrated in Koutroulos (1986a).

In the present paper we consider the general first-order wave equation
(1) and derive general conditions that have to be satisfied in order that the
wave equation possess subsidiary conditions of the second kind.

2. GENERAL CONDITIONS

In this section we see what conditions have to be satisfied in order to
be able to derive the subsidiary conditions of the second kind for a first-order
relativistic wave equation. Let us consider the first-order relativistic wave
equation (1) realized in an n-dimsnsional space and let us multiply it from
the left by the expression

S(Agmo+ Ay + Apmy+ Ay +Ayy) 2)
to obtain
(SAgmo+ SA,mm; + SAymy+ SA; s+ SALx)
X (—Lap+ Ly +L,m+Lm+Ix) g =0 (3)

In the above expressions S is a 1 X#» matrix and A, =0, 1, 2, 3, 4, are
n X n matrices. Noticing that the products SA,, p=0, 1, 2, 3, 4, are 1Xn
matrices and that they can be identified with the row vectors «,, p=0, 1,
2, 3, 4, we can rewrite (3) as follows:

Qoo+ 0T T 0Tt et ag))
- X(Lom+ Ly +Lom+Lym+1x)y =0 (4)
or as follows:
~aolomo + el mom Y + agly o math + el 3 o s

+aomolxy —oulom moip +ayl, 7 +a,lommd + oy lsmmy

+aoym Ixy “0‘2“—0772770(1/+0‘2[L17T27T1(//+012ﬂ-2’ﬂ'§¢

+olsmyms + eIy —aslommoy + el mam

+ oLy moth + sl T3P+ eIy — auxLomos

to XLy +ogxLomy Hoasxlymsy HaaxIxy =0 (5)
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This expression can become a subsidiary condition of the second kind
if certain conditions are satisfied. To find these conditions, let us consider
first the terms in (5) linear in m, i =0, 1, 2, 3, namely

(—aulo+ao) moxfs, (gl o)X 6)
(ols + o) moxdp, (gl 3+ as)msx
Terms like these must not appear in the subsidiary conditions of the second
kind, and we eliminate them by requiring that
OL4[|.0 =y, (!4[]_1 =0

(7)

eyl =—ay, ol;=-ay

Then let us consider the terms in (5) involving 77, i =0, 1, 2, 3, namely

alom, Ly, eolomiy, aslymiy (8)
Such terms must disappear as well, and we obtain this by requiring that
ol =0, a,l, =0, al,=0, o3l;=0 9

Finally, the terms in (5) involving mym;, i=0,1,2,3,j=0,1, 2, 3, can
be written, using the commutation relations

(7, m1=ieFy = fu, k=0,1,2,3, 1=0,1,2,3 (10)
(where Fy, is the electromagnetic field tensor, i =+/—1), as follows:

ol j7rom — oy Lom mo = (gl — o L) momy i — oy Lo fro¢
aol, o — el omamo = (el — Ll o) momath — el o oot
ool st — el oma o = (@l s — aslo) moms i — aslo froth
ol mym el ymm i = (el ol ) mymy ol b
o Ly + ol ymam i = (o ls el ) mymay + ol fi0
oLyt + el mma = (Ll + sy mmaf oL, f

(11)

The terms involving m;7; on the right-hand side of the above relations
should vanish and we obtain this by imposing the conditions

ool —oyly =0, ool —a,ly=0
ool —asl,=0, ol ol =0 (12)
ol +asl, =0, a,lytasl,=0
Thus, expression (5), after imposing the conditions .(7), (9), and (12), is
reduced to the expression

(—elofio—azlofro—aslofsot el foy Hask f51 sl f+ 0‘4X2ﬂ)l// =0
(13)
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which is the general form of a subsidiary condition of the second kind for
a first-order relativistic wave equation.

3. OTHER FORMS OF CONDITIONS (9) AND (12)

The above conditions (9) and (12) necessary for the derivation of the
subsidiary conditions of the second kind can be expressed in other forms
also. For instance, taking the transpose of (9), we have

tr  tr tr  tr
0Qp =Y, 100 =0
(14)
LYal =0, LYai=0
Written in this form, conditions (9) can be interpreted as follows: Each
vector et for i =0, 1, 2, 3 is an eigenvector of each matrix L} corresponding
to zero eigenvalue.
We give applications of this statement below.

1. Dirac wave equation. Applying formulae (14) to the case of the
Dirac wave equation, we see immediately that this equation does not accept
subsidiary conditions of the second kind, because its matrices v\, i=0, 1,
2, 3, do not have zero eigenvalues.

2. Bhabha wave equations. For the same reason, the Bhabha wave
equations for half-integer spin do not accept subsidiary conditions of the
second kind. '

Conditions ((9) can also acquire another form. Thus, introducing (7)
into (9) and considering the transpose, we have

(ILtr 2 tr (ﬂ_tlr)Zazr__:O
@ af=0 (15 ei=0
These relations can be understood as saying that the vector af is simul-
taneously an eigenvector of the matrices (LY)?, i=0, 1, 2, 3, corresponding
to zero eigenvalue. Also introducing (7) into (12) and taking the transpose,
we have the relations
[L7 H tr]+a [[Ltzra [Lg]+a3=
["_ tr]+a O [ tr ltr]+ tr=0 (16)
[H—S s ﬂ-tlr]+a4 = 0’ [ t3ra tr]+ =0
where the notation [, ], is used for the anticommutator between two
matrices. These relations can be translated also as saying that the vector
« is an eigenvector of the matrices
[[Ltkrs ﬂ—tOr]+’ [ﬂ-trfn [Ltlr]+s [u-?;.; tZr]-i-’ k = 1’ 25 33 m = 21 3

corresponding to zero eigenvalue.

(15)
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Conditions (16) can acquire yet another form if for this purpose we
make use of the generators of rotations A, r=1, 2, 3, and of the generators
of boosts B,, s =1, 2, 3, and also of the relations

L=-[L, As], Ly=[L,,As]-, Li=-[L,,A]-
n--kz_[Bka l1-0]—5 k=1a 2,3

where [, ]_ indicates the commutator between two matrices. The new form
of conditions (16) is

(LY BYaf=0, (L5 BSaf=0
(LEYBYaf=0, (LY Afaf=0 (17)
(L Afas=0, (L5 Afay=0

These relations can be interpreted as saying that the vectors Bia™, k=1,
2, 3, are eigenvectors of the matrix (L) corresponding to zero eigenvalue.
The vectors Alaf, m =2, 3, are eigenvectors of the matris (L })? correspond-
ing to zero eigenvalue; and finally the vector Ay is an eigenvector of the

matrix (L5)* corresponding to zero eigenvalue.

4. EXAMPLES

We now give examples of wave equations accepting subsidiary condi-
tions of the second kind and satisfying all the previous conditions.

Example 1 (Pauli-Fierz wave equation). In the case of the Pauli-Fierz
wave equation, conditions (7), (15) and (17) or (7), (14), and (16) are all
satisfied, as can be seen by using the explicit form of the matrices L;, i =0,
1, 2, 3, and of the generators A,, By, k=1, 2, 3, of the wave equation
expressed in the spinor basis

{alila a1129 0212, ‘1121, 01122, aziz, di, dia 1“, 112,
b, by, b3, b, 01, 0 (18)
which turns out to be more convenient to work with.

There are four subsidiary conditions of the second kind and their
number is equal to the number of the spin-1/2 components d', d°, ¢,, c;.
These components must be constrained in order that the equation be a
spin-3/2 wave equation.

The number of subsidiary conditions of the second kind according to
the analysis in Sections 2 and 3 is also equal to the number of linearly
independent eigenvectors ef corresponding to the zero eigenvalues of the
matrices (L)%, i=0,1, 2,3, and such that they also satisfy the conditions
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(17), namely Bia¥, k=1, 2, 3, are eigenvectors of the matrix (LY)? corre-
sponding to zero eigenvalue, N,I‘ou, m=2,3, are eigenvectors of the matrix
(LT)? correspondmg to zero eigenvalue, and Aaj is an eigenvector of the
matrix (L5)* corresponding to zero eigenvalue.

In the spinor basis (18) the matrlces (L¥?i=o0,1, 2, 3, have zero rows
and columns corresponding to the spin-3 components d', d°, c;, ¢, , and so
the eigenvectors (e), j=1, 2, 3, 4, of (L)%, i=0, 1, 2, 3, corresponding
to zero eigenvalues and satlsfymg also (17) are

[ o] 0] [0 [0
0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 |spin- 0 0 0
@@= 5P | g | @Dim| S| (e o
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 |spin- 0 1 0
| 0 |part _o_j Lo_ 1]
Observe that the blocks of the matrices A%, BY, k=1, 2, 3, which have

nonzero effect on the eigenvectors, af when the products Ak(xf{, Yoy are

constructed, are the ones corresponding to spin-3 and reproduce the eigen-
vectors (ay);, j=1, 2, 3, 4, with a different order.

Example 2. Let us now consider the 20-dimensional, spin-3 equation
with definite charge defined by the constants

1 1 1 1
= —— C:———-— —_— e ——
B=27 PNk

_ (19)
A==}, Tr=[=-}, 0=-i x=0

and based on the representation

2,9@(-3,)90,)D(-2,)9G, YD(~1,3
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proposed by Koutroules (1986). For this example again all the conditions
for the existence of the secondary constraints are satisfied, as can be seen
by using the explicit form of the matrices L;, i=0, 1, 2, 3, and the generators
Ay, By, k=1, 2,3, expressed for convenience in the spinor basis

i i i 2 2 2 i 42 o1 &2
{alls Az, Bop, Hyy,Ayy, a223d ’ d s 0 s 6 s
i 512 522 pii pi2 322
bi 7b1 sbl abZ ab2 st » €15 €25 V1 ’)/2} (20)

There are eight subsidiary conditions of the second kind and this
number is equal to the number of the spin-} components d*, d°, 8', 8% ¢,,
¢, Y1, Y2, Which have to be constrained in order that the equation be a
spin-3 wave equation. We notice that the number of subsidiary conditions
of the second kind is equal to the number of linearly independent eigenvec-
tors aj corresponding to the zero eigenvalues of the matrices (LY)?, i=0,
1, 2, 3, and such that conditions (17) are satisfied also. The matrices (L¥)?
i=0, 1, 2, 3, when considered in the spinor basis (20), have zero rows and
columns corresponding to the spin-; components and their eigenvectors
(af),, corresponding to zero eigenvalues and satisfying (17) are

0 0] 0] 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 |spind 0 0 0
0 1 0 0
0 |spin- 0 1 0
@=L @@=, =] 2], eme=| L
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 |spin-: 0 0 0
0 0 0 0
0 | spin- 0 0 0
L 0] | 0 | | 0| KN
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1
J
1
]

1
-l
1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
@Do=| | . @De=| 3| . @@= 5|, @Dm|g
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
L 0 J L 0 .J L 0 . L 1 4
Observe again that the blocks of the matrices Af, BY, k=1, 2, 3, that have

tr tr ir tr

nonzero effect on the eigenvectors () when the products Afay, Bial
are constructed are the ones corresponding to spin-3 and reproduce the
vectors (aff) with a different order.
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